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SUMMARY 

An asymptotic scheme is presented for the solution of the steady state and time dependent stream functions for 
flows in symmetric curved walled channels. In this scheme a class of non-linear Jeffery-Hamel solutions 
appear at O( l), and thus provide the first approximation to the steady state stream function. This class of 
Jeffery-Hamel solutions are evaluated by using a simple perturbation about Poiseuille flow. 

The classic Orr--Sommerfeld eigenproblem appears a t  O( 1) in the asymptotic development of the time 
dependent stream function, but here there is a slow streamwise dependence. This eigenvalue problem, for a 
complex wave number, is solved using an algorithm which automatically provides an initial guess which is 
then used to iterate to the correct eigenvalue. 

Higher order terms in the asymptotic development, for both the steady state and time dependent stream 
functions, are evaluated to provide a solution for the total stream function. 

K E Y  WORDS Jeffery-Hamel Orr-Sommerfeld 

1. INTRODUCTION 

In this investigation we consider flows in curved walled channels, and express the Navier-Stokes 
equations for a viscous incompressible fluid in terms of Fraenkel's'*2 general orthogonal co- 
ordinates. In the results presented here, the curvatures of the channel walls are constant in sign. 

We consider first a steady state spatially dependent stream function sZ(<,y) (where < and y 
represent the downstream and transverse co-ordinates respectively), and present the analysis in 
Section 3. Using Fraenkel's1,2 small wall curvature theory, a class of Jeffery-Hamel  solution^,^*^ 
which are exact for channels with plane walls5 (henceforth straight walls), are used as a first 
approximation for channels with slowly varying walls. Hence, the asymptotic development for 
Q(<, y) is expressed in ascending powers of a small parameter, where these non-linear Jeffery- 
Hamel solutions appear at first order. The slow variation of Q(& y) in the streamwise direction is 
expressed in terms of a slow variable o1 = E~"<,' and these non-parallel slow variations along with 
curvature are accounted for by higher order terms. 

The class of Jeffery-Hamel solutions are perturbed about linear functions, the first of which 
represents plane Poiseuille flow.7 These perturbation functions are unique for every Jeffery-Hamel 
solution here, and need only be computed once. The linear differential equations satisfied by the 
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perturbation functions are discretized using central difference formulae of 0(h4). However, in order 
to define these functions throughout the whole problem domain it is necessary to use mixed order 
difference formulae in the boundary conditions. The numerical scheme to evaluate a class of 
Jeffery-Hamel solutions is found to be economic even for a large number of perturbation 
functions. The final results agree very well with other numerical and with results 
computed from analytic expressions. l s 2  

The linear differential equations for the higher order functions in the asymptotic development 
for Q([, y), are discretized using a similar finite difference scheme to that used for the perturbation 
functions. The set of matrix equations obtained have a common L.H.S. with a different R.H.S. 
vector for each of these higher order functions. 

A small disturbance a((, q, t )  to the steady state Q(<, y) is considered in Section 4. The resulting 
linear differential equations, with slowly varying coefficients, independent of time, suggest that 
fixed frequency disturbances of form q5(a,, q)exp(i(@(<) - Pt ) )  are appropriate solutions for 
a([, q, t). The slow variation in the [-direction is allowed for through the complex wave number 
k(cr,) where d@/d< = k(a,). This form to a(<, y, t), with spatially varying amplitude,” is a 
modification to the quasi-parallel approach which would ignore the slow variation in the [- 
direction.*, I 

The asymptotic development for a(<, y, t )  yields the classic Orr-Sommerfeld eigenproblem at 
lowest order, where here the coefficients exhibit the slow variation with <.* In fact this problem has 
formed the basis for linearized stability theory for over half a century.12-15 Earlier analytical 
methods for its solution have been superseded by numerical ones, and an important investigation is 
referenced in Reference 16. In the present investigation, the necessary characteristic equation 
defining the eigenrelation is approxiniated by a quartic equation with complex Coefficients. This 
quartic yields a consistent and good initial guess which is used in a modified quadratic Newton- 
Raphson scheme to iterate to the correct eigenvalue. 

The solution of the higher order disturbance equations implied by the asymptotic development 
for a([, y, t )  is described in general form, and Runge-Kutta schemes of order four are used to find 
particular solutions to these equations. 

The potential to carry out a full stability analysis is discussed in Section 5, and the application of 
the theory to channels with more general curvature is exemplified in Figures 7 and 8. 

2. THE PROBLEM 

Consider the Navier-Stokes equations in two dimensions for an incompressible viscous fluid. We 
can express these equations using general orthogonal co-ordinates (al, a,) in terms of the 
dimensional stream function which is given by 

where T is time, h ,  and h, are the scalar factors and 

The co-ordinate system to be used here is in Fraenk‘el’s’,’ notation, and this is recalled and 
summarized. 

Let ( X ,  Y) denote the dimensional system of Cartesian co-ordinates where the following 
transformation is used: 

Z=Z( i )  whereZ=X+iY and i = [ + i q  
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We also define H and 9 by 

Here, H is a dimensional scaling factor, that is an arc length dS in the Z plane is H times the 
corresponding arc length in the ( plane, Id21 =Hid[(. The parameter 9 is the angle between 
corresponding line elements? so that arg (d2) - arg (dl) = 9. Let 

Using (2) and (3), the Cauchy-Riemann equations yield 

1 aH as 
H a t  a? 
1 ali  as 

H a? a t  

IC=--==:- 

A=--= -- 

where KIH and A/H are the curvatures in the 2-plane of the co-ordinate lines corresponding to 
5 = constant, and q = constant, respectively. The form of (1) can now be transformed in terms of 
Fraenkel's general orthogonal co-ordinates (5, q) where h,  = h, = H ,  a, = 5 and a, = q. The non- 
dimensional equation is found by setting 

(5 )  
b2t 
M 

q = M \ Y ;  H=bh;  T=-; Z = b z  

where M is defined to be half the volumetric flow rate per unit depth normal to the (5, q) plane, 2b is 
approximately the throat width of the channel at 5 = 0, and it can be shown that 2H is 

0 .  

- 4  . 

-8 . 

I I 

X 

17 = -1 

Figure 1. A curved walled channel given by a(z) = c1I2 + E ' h z z  for n = 1 and E'/' = 0.4 
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approximately the width of the channel corresponding to t = constant."2 The channel shape and 
notation are shown in Figure 1. Thus (1) can be shown to take the form 

where D2 = 82/aq2 + a2/8(2 and the boundary conditions are given by 

and 
Y = k + ,  at q = & l  

-=O, at q = $ . l  
aY 

aq 

The Reynolds number R has been defined by M/v.  It is necessary to define R in this way so that it 
will not vary from station to station in the channeL5 

The condition (7) follows from the definitions of Y and M earlier, and (8) is the no slip condition 
at the walls of the channel. It should be emphasized that (7) and (8) do not necessarily imply that Y 
is an odd (antisymmetric) function, but are consistent with such an assumption. 

It is assumed that Y, the total stream function, is given by 

Y(t, q, t )  = Q(t, ?) + @(t, v, t )  (9) 
where Q(t, q) is called the steady state stream function and @(t, q, t )  is called the time dependent 
stream function. In addition, the functions Q and cf, are chosen to be the odd and even parts of Y ,  
respectively, with respect to q. 

3. THE STEADY STATE EQUATIONS 

3.1. Theory 

The steady state equation for Q(t, q) may be deduced from (6), it is given by 

and 

(lob) 
aQ 
arl 

Q = k 1 ,  at q = k l ;  -=O, at q = f l  

It can be seen that (10a) is non-linear. 
Fraenkel's1,2 asymptotic development of the solution to (10a) depends on a parameter F ,  

assumed to be small, such that 

E [ = z ;  F ~ = C T ;  z = a + i ~ q  ( 1  1) 

= a(.) (12) 

In addition he proposes 

These relations ensure that p varies slowly with [ and is nearly real. The geometric significance of 
function a(z) is that it may be shown to be approximately equal to the real semi-divergence angle of 
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the channel wall (see Figure 1). Fraenkel',' showed that the choice of a(z) depends crucially on two 
necessary conditions to be satisfied by R and E, these are 

and 
Ra = O( 1) 

RE < O( 1) 

With these conditions Fraenkel ensured that a class of Jeffery-Hamel solutions for a straight 
walled channel appear as the first order terms in the solution for the curved walled channel. 
Fraenkel's asymptotic solution of (1Oa) is based on E --+ 0 with o, q fixed. 

In the present case the channel chosen is characterized by 

a(z) = E'/' + E'i'mz (15) 
The choice of the parameters o and E, although justified for the steady state case, leads to problems 
of unboundedness in the time dependent analysis. For this reason the introduction of a new slow 
variable, ol, becomes necessary. This is given by 

(164 0. - &'I' 

which implies 
o = &%' (W 

The asymptotic analysis will now be based on -0 with o1 and q fixed. Exact expressions for K: 
and ;1 in terms of 6''' can be obtained from (3) and (15). The choice of a(z) and a parameter v such 
that 

1 -  5 

ensures that (13) and (14) are satisfied. 
It is shown in Appendix I that the asymptotic expansion for O(t,q) takes the form 

O(t,q;u,m)= G,+E'/'(G, + a l G l ) + ~ ( G 5  +o,G4+o:G1)+**. (18) 

The equation for Go is given by 

d4G0 dGod2Go 
_____ + 20- - = 0 
dv4 dv dv2 

where 

The first order term, Go, represents a class of Jeffery-Hamel solutions for the straight walled 
channel. The equations for the remaining functions may be expressed in the general form 

d4Gi d (dGodGi) 
- + 2 ~ -  -- =F(G-), J ( j = i - l , i - 2  ,..., 0) 
dv4 dtl dv dv 

where 
dG, 

Gi=-=0, at q =  + 1  ( iB1)  
dv 

Explicit expressions for F(Gj) may be found in References 18 and 19. 
One result from the assumption that a(<, q)  is odd is that the functions G,(i 3 0) are also odd. 
The scheme used to determine Go is essentially a perturbation about Poiseuille flow, where Go is 
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expanded as a Taylor series in power of u. 

where the w,’s are called perturbation functions. The function wo represents Poiseuille flow. 
It is interesting to note here that the solution to the problem follows a natural physically based 

sequence. The solution of the curved walled channel is obtained by perturbing about the straight 
walled channel, the solution of which in turn is based on perturbing about Poiseuille flow. Thus the 
three stages, from parallel to straight to curved walled channels are naturally introduced as steps in 
obtaining the final solutions. 

Since Go is an odd function, the boundary conditions in (19b) may be rewritten as 

On substituting (21) into (19a) and comparing powers of u, the following expressions are obtained 
for the perturbation functions w,. 

where 

and 

where 

d4w, 
dv4 - O  
-- 

d2wo dwo 
dV2 dV 

w,(O) = -(O) = 0; wo(l) = 1 ,  -(1) = 0 

d2w, d wr 

dV dq 
Wr(O) = T ( 0 )  = 0; w,(l) = -(l) = 0 

3.2. The numerical solution 

These linear differential equations may be discretized using central difference expressions of 
O(h4), given in Appendix 11. In matrix form they become 

CAI {Wr) = {Br} ;  r > 0 (25) 
The banded matrix [ A ]  containing the finite difference coefficients is common to all the w,’s, and 
hence needs to be generated only once. The functions are defined at the grid points 1 to N inside the 
problem domain, that is q = 0 to y~ = 1, by the application of the discretized forms of either 
equations (23a) or (24a) at these points (see Figure 2). 

When using central difference expressions of O(h4) problems may be encountered near to or on 
the boundaries. To illustrate these problems we refer to Figure 2. The application of the discretized 

= O  l l = l  

I I 
m m 

W U J  UJ 

-3 -2 -1 0 1 2 N-2N-1 N N+l  N + 2  N + 3  

Figure 2. A finite difference grid for half the channel 
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forms of either equations (23a) or (24a) (see Appendix 11) at y = 0 and y = 1, requires the definition 
of the functions at auxiliary points outside the problem domain, as shown in Figure 2. The 
antisymmetric conditions at q = 0 are sufficient to define these auxiliary points. However, at q = 1 
only two boundary conditions are available, as shown by equations (23b) or (24b). This difficulty 
can be overcome by eliminating the grid point ( N  + 3) from the finite difference solution. This can 
be achieved by using mixed central-backward difference expressions for the fourth derivative on 
the boundary, so that the point ( N  + 3) does not appear in the solution. However, numerical 
instabilities and associated convergence problems were introduced with this approach. * 

An alternative method, discussed in more detail in Reference 18, involves the derivation of an 
additional boundary condition that can be used to define point ( N  + 3). This can be obtained by 
differentiating equations (23a) and (24a) once with respect to y, so that 

d’w, ___- -0, at q =  1 
dv5 

and 

The dilemma of using the discretized form of equations (26), using finite differences of O(h4), is that 
they involve an additional point ( N  + 4), which again is undefined. To overcome this problem, 
finite difference expressions were derived for the relevant derivatives of w, from the same 
polynomial, as shown in Appendix 111. The consistency of this method lies in the fact that all 
derivatives have been derived from a polynomial of O(8). The derived finite difference expressions 
in Appendix I11 involve only three auxiliary points at ( N  + l), ( N  + 2) and ( N  + 3), which are now 
completely defined by the use of the discretized forms of equations (23b) and (26a) or (24b) and 
(26b). This scheme was found to produce results for Go which agreed to four significant figures with 
exact analytic based on elliptic functions. 13’ Such results are shown in Table I. 

The advantage of the present method in comparison to the other available methods of solution, 
such as Runge-Kutta schemes, is that the perturbation functions w,(y) need be obtained only once, 
and G, can then be simply computed using equation (21) for any value of u. 

Once G, has been computed, solutions for GJ{ j = 1,. . . ,5) may be obtained by discretizing 
equation (20) using a scheme similar to that discussed for Go. The resulting discretized linear 
algebraic equations take a form similar to equation (25). In this, the left hand side matrix need be 
constructed only once. Solutions for different G, may be obtained after computing the relevant 
right hand side vector, using equation (20). 

Table I. A class of Jeffery-Hamel profiles at 
r/ = 0, by elliptic functions, and the present 

perturbation scheme, for a range of v 

Elliptic Perturbation 
U (Fraenkel) (present) 

3.13 1.78 1 1.781 
3.572 1.856 1.856 
3.904 1.926 1.926 
4.093 1.973 1.973 
4.295 2.03 1 2.03 1 
4.712 2.188 2.188 
5.102 2.429 2.429 
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Table 11. Results of Go and some derivatives a t  q = 05, using 80 q steps with Y = 5, for a 
different number of perturbation terms in the straight walled channel 

Perturbation 
terms G0(0.5) Gh(0.5) Gg (0.5) G g  (0.5) 

8 0,856785 0.892198 - 3.505546 4.1 12094 
16 0.873550 0.859079 - 3.664425 5.208263 
32 0.878250 0.849729 - 3.707526 5.510530 
40 0.876610 0.84901 1 - 3.710787 5.533522 
48 0.878742 0.848749 - 3.71 1974 5.541906 
56 0878792 0.848648 - 3.712430 5545129 
64 0.878813 0.848607 - 3.71 26 12 55465 15 

Table 111. Results of Go and some derivatives a t  q = 0.6, using 64 perturbation 
terms with u = 5, for a different number of q steps in the straight walled channel 

Number of q 
steps 

20 
30 
40 
50 
60 
70 
80 

GO(0.6) 
_____.--.- 

0.946 175 
0.9461 56 
0.9461 52 
0.946 15 1 
0.946 1 5 1 
0.946 1 5 1 
0.946 1 5 1 

Gh(O.6) G[ (0.6) 

0509933 
0.509661 
0.50961 4 
0509602 
0509597 
0.509595 
0.509594 

- 3’030069 
- 3.029546 
- 3.029455 
- 3.029430 
- 3.029421 
- 3’0294 17 
- 3.02941 5 

7.844 196 
7.848 162 
7.848649 
7.848763 
7.848800 
7.8488 15 
7.848822 

Table 1V. Results of G, and some derivatives at = 0.6, using 64 perturbation terms with u = 5, 
for a different number of q steps in the curved walled channel 

Number of q 
steps G (0.6) GT(O.6) 

20 
30 
40 
50 
60 
70 
80 

3.041 040 
3.01 1692 
3.006590 
3.005 175 
3.004662 
3.004442 
3-004334 

- 9.745376 
-9.642115 
- 9.624146 
-9.619519 
- 9.617354 
- 9.616576 
- 9.616197 

- 16’160815 
- 16.0795 10 
- 16’065 167 
- 16061159 
- 16‘059703 
- 16.059074 
- 16058766 

21 2.483875 
209.804742 
209.333534 
209.202239 
209.1 54608 
209.1 34069 
209.1 24049 

A parametric study was carried out and the results, which are summarized in Tables 11-IV, 
showed that for an extreme value of u, 64 perturbation in equation (21) and SOY steps were 
necessary for Convergence to at least four significant figures for G,(i = 0,. . . , 5 ) ,  and their first three 
derivatives, where Gb denotes the first derivative w.r.t. q. Computationally the scheme was found to 
be both economic and efficient. 

The steady state stream function f2 may now be computed using equation (18) for the complete q 
range and the required values of the downstream variable ( T ~ .  

The convergence of the truncated expansion for a, given by equation ( 1  S), up to the O(E) term, is 
examined in Figures 3 and 4. This is achieved by comparing the present solution with that obtained 
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“t 

t 
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 C1 

Figure 3. The steady state stream function in the downstream direction at different orders for u=3.572; R =  30, 
m =  I ...... o(I), -.-u(&1q, ------o(&), - 0 ( ~ 3 9  
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(a) (b) 

Figure 4. The steady state stream function in the transverse direction at different orders for u = 4.71; R = 30, m = I, 
at ol = 0.0 and o1 = 1.6. - - - - -O(E), ---O(E~’’) 

by extending equation (18) to include the 0(c3/’) term (reported in Reference 18). The plots of 
a([, y) corresponding to various orders of ( E l i z )  in Figure 3 justify the asymptotic scheme adopted. 

Within the range of interest for c1 and v 

0.0 < c1 < 2.0 
0.0 < v < 5.0 
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The maximum difference between the O ( E ~ ” )  and the O(E) solutions for R was always found to be 
less than 7 per cent. This is reflected in the close agreement between the corresponding curves in 
Figures 4(a) and 4(b). It can therefore be concluded that truncation of a as given by equation (18) 
yields sufficiently accurate results. 

4. THE TIME DEPENDENT EQUATIONS 

4.1. The theory 

The time dependent stream function cf, can be thought of as an infinitesimal disturbance to the 
steady state. The equation for @(<, y, t )  can be found by substituting (9) into (6) and assuming that 
non-linear terms in @ are sufficiently small to be neglected. We obtain 

where 

(27b) 
a@ 
av 

@ = - = 0 ,  at y = + 1  

The coefficients of (27a) are independent of time and are slowly varying with 5. The stream function 
of the disturbance, for constant frequency, fl, is chosen to be of the form 

@(<, r,  t )  = Wl, ?) exp (iCB(<) - Ptl)  + C.C. (28) 
where C.C. represents the complex conjugate of the preceding term, and f l  is chosen to be real. 

wave number k(ol). This is defined in terms of the complex phase function @(<) where 
The slow variation of the coefficients in the <-direction is allowed for by the use of a complex 

d0 
- = k(a1) 
d5 

The expression for the non-dimensional scaling factor h, appearing in equation (27a), may be 
obtained for the present channel (equation 15) by combining equations (2), (3)  and (5), with 
dzjdi = 1 at i = 0, so that 

In the steady state case R and E~~~ are related through the use of equation (17). However, this 
relationship is relaxed in this time dependent analysis, with R and assumed to be independent 
for the purpose of establishing an asymptotic solution to equation (27). Nevertheless, equation (17) 
is still considered to apply and it is returned to in the final analysis of the results. This artificial 
relaxation allows the retention of the important viscous term, identified by 1/R in equation (27a), in 
the first order term of the asymptotic expansion for #. This first order term now provides a more 
accurate approximation to the exact solution than would be the case otherwise. This technique 
has been used by other a ~ t h o r s , ~ , ~ ~ - ~ ~  where more detailed explanations are given. In fact a direct 
numerical approach’ on the investigations in References 8 and 24 provides another check on the 
validity of this technique. 
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The asymptotic development for 4 takes the form 

4@1> r; R, m) = Cpo(o1, r; R, m) + &1'241(% r; R, m) + &42(@,, r; R, 4 + . . . (31) 

4(0,0) = 1 (32) 

Cbo(0,O) = 1; 4i(0,0) = 0; i > 1 (33) 

The function 4 is conveniently normalized by assuming that 

and (32) can be equivalently expressed by 

By substituting (31) into (27a) and comparing powers of E'" once more the following set of 
equations are obtained. 
At U( 1) we have 

L40 = 0 (344 

and 

with 

This represents the classic Orr-Sommerfeld problem with the frequency, p ,  and the wave number, 
k,  being replaced by functions of the slow variable ol, which are pI(ol) and k(o,), respectively. For a 
given /3 (real) and fixed ol, it is an eigenvalue problem in k .  

The higher order equations are of the form 

L#i=Ti;  i >  1 
where 

The R.H.S. of equation (35a) increases in complexity with each i. In fact 

and 

The exact forms of (36a) and (36b) can be found in References 18 and 19. 

and so a solution may be found in the form 
The downstream variable o, only appears as a parameter in the homogeneous equation (34a), 
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From the theory of homogeneous differential equations,2s the solution for the non-homogeneous 
stream functions +i may be put in the form 

(3W 
3.f. 
drl 

fi(o,, 1)  = +o,, +. 1) = 0; i 3 1 

Using the normalization given by equation (33) and choosing 

fo(o,, 0) = 1; fi(ol, 0) = 0; i 3 1 (39) 
the complex functions Ai(ol)(i  2 0) can be interpreted as the amplitudes of cbi along the centre of the 
channel. 

4.2. Numerical solution 

The scheme to solve equation (34) is described as follows. 
The complex eigenfunction f o  is an even function in q and hence the boundary conditions (37b) 

can be replaced by the following conditions for all 0,. 

a f o  - a 3 f o  =0, at q = O  
av ar3 

Let ul(q) and u2(q) be particular solutions to (34) for fixed c,, then 

f o ( o 1 , d  = B1u1 + B2uz 
where B, and B ,  are arbitrary constants for fixed o,. 

Using (41) and (40b) we obtain 

B,u,(l) + B,u,(l) = o  

From the theory of homogeneous algebraic equations, a certain characteristic equation must hold 
for a non-trivial solution to (34). This can be expressed here by insisting that B ,  and B, are non- 
trivial and so 

This equation defines the eigenrelation for equation (34). 

the following conditions at the centre: 
The particular solutions ul(q) and uz(q) are expanded about q = 0 using a Taylor series satisfying 

U,(O) = 0, U,(O) = 1 (444 
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d2u, d2u, 
---(O) = 1, 7(o) = 0 
dy2 dfl  

d3u, d3u, 
----(0) = 0, --(O) = 0 
dV3 dv3 (444 

These conditions are chosen to satisfy equation (40a), otherwise the choice of equations (44a) and 
(44c) is arbitrary. The fourth derivatives in the expansions for u1 and u2 may be obtained using 
equation (34a). Hence these expansions take the form 

d3C 
24 dy3 

ik2Rpe2“‘ - ikRJ(0) - 

Assuming that equations (45) describe functions ut and u, approximately for all y’s, substitution 
in equation (43) yields the following quartic in k ,  which can be regarding as an approximation 
to the exact eigenrelation. 

This quartic polynomial with complex coefficients is solved completely for each c1 by using a 
modified Newton-Raphson technique for such polynomials. The complex roots to (46) exhibit an 
interesting consistency in that one of these always has a positive real part, and the remaining three 
always have a negative real part. In the context of this problem the physical wave number of the 
channel is defined by k ,  (Real (k)) .  Thus the approximate root is the one characterized by a positive 
real part. This consistency may be explained by appealing to the relationships between the roots of 
the polynomial (46), its coefficients, and the physical constraints of the problem. It is shown in 
Figure 5 that the real part of the approximate eigenvalue k,, obtained by using equation (46) 
becomes closer to the ‘exact’ value, obtained from the ‘exact’ solution of the differential 
equation (34), at large values of g1. This property of the approximate solution was used in the 
numerical iterative scheme employed to obtain a more accurate solution to the eigenvalue 
problem. 

With this initial estimate of k, starting with the maximum value in the g1 range, a ‘marching’ 
iterative scheme (based on a Runga-Kutta method of order four) was used to solve u,(y) and uz(q). 
The ‘marching’ scheme was started at the centre of the channel, y = 0, where u1 and u, satisfy 
conditions (44). 

With a complete set of ul’s and u2’s computed for this approximate eigenvalue k,, a function 
F(k,) is defined by 

By defining two more eigenvalues k ,  and k ,  close to k,, with their respective functions F(k,) ,  F(k,), 
a modified quadratic Newton-Raphson s ~ h e m e , ~ ~ ~ ~  requiring three initial values of k is used to 
predict a more accurate eigenvalue. The whole process is repeated until this iterative procedure 
gives a set of ul’s and uz’s which satisfy (43) within the required numerical accuracy. Once the correct 
eigenvalue has been obtained it then becomes the approximation for the next gl, so equation (46) is 
used only once to obtain an initial guess for k for each different set of R, 0 and p. The normalization 
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Figure 5. The approximate eigenvalue compared with the correct value for u = 4.093; R = 100, b= 1.5. --correct, - - - - - 
approximation 

on f,, (39), and the condition (44a) are sufficient to define B,, and the boundary conditions (42) at 
the wall, y = 1, define B , .  In this way the eigenfunction fo(ol,v) can be defined completely. 

With f o  obtained it only remains to solve for A ,  in order to define 4, completely. To solve for A ,  
we appeal to a solvability condition on 4bl. It can be shown from the theory of non-homogeneous 
differential equations," that 

j1 j7bL41df?=O (48) 
-1 

where 7, is the adjoint eigenfunction of f,. Using equations (35a) and (36a) for i = 1, the solvability 
condition may be ~ h o w n ' ~ , ' ~  to reduce to the form 

and from (33) 

A,(O) = 1 /49b) 
The complex function H(o,) is defined in terms of definite integrals.'8s19 Integration of equation 
(49) gives 

In a similar fashion the equations for all subsequent amplitude functions A,(o,); ( i  2 1) can be found 
by appealing to the solvability condition on the next order equation for $i+ The solvability 



CHANNELS WITH SMALL WALL CURVATURE 183 

condition can now be generalized to read 

j1 yoL4i+ldy=0; i > 0  (51) 
- 1  

for any function A,(o,); (i 3 0). Proceeding as before we obtain for subsequent A;s 

dAi 
~ + H(al)Ai = Pi(al); i 3 1 
d@l 

with 
Ai(0) = 0 

The complex function F(aJ is defined explicitly in References 18 and 19 for the case corresponding 
to i = 1. It can be shown by integrating equation (52a) that 

The particular integrals fi(ol, y) for the non-homogeneous system (35a) can be expressed25 for 
fixed a1 by 

fi(ol,q) = XiUi(Y) + Yiu2(~)  + ui(Y); i 2 1 (54) 
where u1 and u2 are the particular solutions for fixed ol of the previous homogeneous problem, and 
Ui(q) is a particular solution to (35a); X i ,  Yi are constants for some fixed ol. The conditions at the 
wall (38) yield 

X,Ul( 1) + YiU2( 1) + Ui( 1) = 0 (554 
du 1 du2 dUi 

XiP(1) + Yi---(l) + --(1) = 0 
dy dy dl? 

" t  
1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 0.5 1.0 1.5 2.0 I G? I 

I40 + &l"h  I 
Figure 6. The behaviour of r#~ versus 9 at G $  = 1.28, with and without the 8''' correction; u = 4.093, R = 30. - - - - - ___ 
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The eigenrelation (43) indicates that equations (55a) and (55b) are not independent, and hence an 
infinity of solutions exist for Xi and Yi satisfying (55). Thus in order to find particular solutions of 
(55), without loss of generality we may choose Yi = 0, and so 

The function Ui(y) can be computed using a Runga-Kutta method similar to that described for 

It can be seen that the complexities of the formulations and their solutions increase dramatically 
with increasing order of terms in equation (31). For this reason and for the requirements of the 
present solution, it was found suficient to truncate equation (31) up to and including the ( p l  term. 
However, the function f z  was computed for the purpose of checking the accuracy of the amplitude 
function Al(al) .  In general, the value of f i ( i  > 1) is accurate when the condition given in (56) is 
satisfied, which in turn also serves as a check on the amplitude function A,- l(al). To define 42 
completely would mean solving the equation for A,(al), and this can only be obtained by using the 
solvability condition on 43 (51). 

In Figure6 the effect of including 41 in the asymptotic expansion (31) is illustrated. The 
maximum observed difference between I Cp0 1 and 1 Cpo + ~ " ' " 4 ~  I at a position downstream defined by 
crl = 1.28, is approximately 13 per cent. 

Ul(?) and 4 f 7 ) .  

5. DISCUSSION 

The preceding sections have provided the theoretical basis, and the numerical techniques necessary 
to solve the Navier--Stokes equations for the steady state, a(& yl), and time dependent, a((, yl, t),  
stream functions, for flow in a symmetric curved walled channel. In fact this solution for the curved 
walled channel given by (1 5) provides the solution for straight walled channels on setting m = 0 or 
in the asymptotic sense ellz -+ 0, G ~ ,  y, m fixed. The solution also contains the Poiseuille case when 
E l i z  = 0. 

The perturbation scheme employed to solve the non-linear differential equation for Go(y) gave 
accurate results even for relatively high values of the perturbation parameter v. In fact a value of 
v = 5 was used in a parametric study to optimize the number of perturbation terms and q steps 
required. 

The occurrence of the Orr-Sommerfeld problem in stability studies makes an independent and 
automatic iterative scheme more desirable than purely searching routines, or routines that rely on 
drawing information from other investigations. 

The full potential of the results with higher order terms and curvature included, may be realized 
in a stability study.18,19 In fact these results would facilitate a stability study of the spatial growth 
of the disturbance up to and including the O(E) term. We note that 42 is not necessary for such a 

and its solution would only be necessary if the stability study were to include the O ( E ~ " )  
terms, which in this case would be prohibitively complicated. 

The stability analysis would involve finding the critical Reynolds number at each local point, 
and using the minimum of these to determine the overall Rcrit. By local Rcrit we mean that the local 
growth of the disturbance in the streamwise direction can occur for some values of the frequency 
when R > R,,,,, local, but now growth can occur for any p when R < Rcrit, local. In any analysis of 
the results the relationship ( 1  7) which was relaxed in the time dependent analysis would be returned 
to. 

The theory can be applied to a number of symmetric curved walled channels. In Figure 7 an 
accurate representation of the channel generated by defining a(z) = EiiZm, sech' z, is given. This 
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(r=1.2 

8 -  

4 -  

- 4  - 

-8 - 
Tl =-I  

Figure 7. A curved walled channel given by ~ ( 7 )  = ~ ' " r n ,  sech'z with m, = 1 and e l i 2  = 0.4 

channel is within experimental dimensional limits, and its bottle-neck feature would exhibit nearly 
Poiseuille flow far upstream and downstream with Jeffery-Hamel type flow near a region where 
the angle of divergence reaches a maximum. An additional channel with physically interesting 
features is given in Figure 8, this is a schematic representation of a(z) = &l'zm,z/(l + z2). This 
channel may be of interest as it contracts then dilates in a manner similar to a Venturi tube. 

A stability study of it would follow the lines of the channel presented in Figure 7, the results of 
which may be found in References 18 and 19, 

A few velocity profiles have also been included in Figure 8 to demonstrate that we expect the flow 
to be initially like Poiseuille (A), then, as the channel contracts, the velocity at the centre decreases 

Figure 8. A curved walled channel characterized by E(T) = ~'~*rn,z/(l + T'). (The velocity profiles are not to scale) 
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(B), and near the region cr = 0 it resumes nearly Poiseuille flow again (C). As the channel dilates, the 
flow becomes increasingly more like Jeffery-Hamel flow where separation may take place, and 
finally ending with nearly Poiseuille flow again (E). 

Fraenkel'72 states that these slowly varying channels are characterized by the property 

C(<) = l(loca1 wall curvature) x (local channel width)l< E~ (57) 
where C(4) is a dimensionless wall curvature function, and the asymptotic expansion is expressed as 
some power of eo. Fraenkel goes on to show that if the parameters in the definition of CI(Z), equation 
(15), are such that 

da(a)< 
da 

then 
Eo = 2 E  (59) 

Under these circumstances the local wall curvature at v = I ,  (A/H), may be shown to satisfy 

1 E  
H ' H  
-<- 

and since H = bh has a minimum value when C T ~  = 0, (30), then the maximum curvature which can 
be admitted is given by (h  = 1) 

1 E  -<- 
H b  

6. CONCLUDING REMARKS 

We have provided asymptotic and numerical schemes for the solution of the steady state and time 
dependent stream functions, for flows in symmetric channels with small wall curvature. In these 
schemes a class of non-linear functions appear as first order approximations to the basic flows, and 
the Orr-Sommerfeld equation appears as the first order problem for small disturbances to these 
basic flows. 

The numerical and perturbation methods have produced consistent results, and where 
comparisons could be made, these results agree well with other published results. 

To test the validity of this stability theory experimentally, it would be necessary to choose an 
appropriate ~ ( z )  which not only satisfied the constraints of the theory, but was also practical 
enough to be constructed in the laboratory. The channels presented in Figures 7 and 8 offer two 
such choices. 

It can therefore be seen that the theoretical and numerical analyses presented here have 
applications in stability studies for the class of channels considered, and other symmetric channels 
satisfying the required constraints. 

LIST OF SYMBOLS 

general orthogonal co-ordinates 
amplitude functions for the disturbance stream functions 

a length scale, approximately half the throat width 
(Pi(a1, 
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the eigenfunction ( f o )  and the adjoint eigenfunction 
solutions to the O(&liZ), and O(E) disturbance equations, 
respectively 
terms in the steady state stream functions Q(t, 1.1) 
non-dimensional scaling factor 
general orthogonal dimensionalized scaling factors 
dimensional scaling factor 
coefficient in the amplitude equation for Ao(a,) 
complex wave number. 
operator in the 0(1) disturbance equation 
curvature parameters. 
half the volumetric flow rate 
the Reynolds number M / v  
non-dimensional time 
dimensional time 
solutions to the O( 1) disturbance equations 
parameter defining the Jeffery-Hamel profiles 
perturbation functions 
non-dimensional x-Cartesian co-ordinate 
dimensional x-Cartesian co-ordinate 
non-dimensional y-Cartesian coordinate 
dimensional y-Cartesian coordinate 
x+ iy  
X + i Y  
like the semi-divergence angle of the channel walls 
a real frequency 
the intrinsic real frequency 
The parameter characterizing the slow variation 
the non-dimensional complex variable ( = 5 + iq) 
the non-dimensional transverse co-ordinate 
the complex phase function 
the angle between corresponding line elements in the Z,  5 plane 
like the curvatures of the lines in the plane 
the complex function generating symmetric channels 
the kinematic viscosity 
the non-dimensional downstream co-ordinate 
the slow-downstream variable ( = 85) 

the slow downstream variable ( = &'/'t) 
the slow complex variable ( = E U )  
the time-independent disturbance stream function 
the time-independent disturbance stream functions of O( 1), 
O(&li2), and O(E), respectively 
the time-dependent disturbance stream function 
the non-dimensional total stream function = f2 + ct, 
the dimensional total stream function 
the steady state stream function 
the O(1), O(E'~'), O(E) and O(c3/') steady state stream functions, 
respectively 



188 G. A. GEORGIOU AND C. P. ELLINAS 

APPENDIX I 

The asymptotic expansion for R((, y) takes the form 

Q(5, y; u,m) = no(@, y; Ylm) + &1421 ((7, y; Ylm) + &Q,(cr, y; vim) + . . * (61) 
In turn R,, R, and Q2 are expanded in a Taylor series about cr = 0 using cr = ~ ‘ / ~ c r , .  New functions 
are introduced such that 

Qo = xo(o,, y; u, m) = G&; Y) + ~ ‘ ~ ~ o , G , ( q ;  Y, m) + &a:G,(q; Y, m) + . . . (62) 

Q, = X , ( ~ ~ , Y ; Y , ~ ) = G , ( Y I ; ~ ) + E ” ~ ~ , G ~ ( ~ ; Y , ~ ) + . . .  (63) 

(64) = ~ 2 ( 0 1 ,  y; D,  m) = G,(y; Y) + . . ’ 
There is no need to go any further in (63) and (64) since x1 and x2 are multiplied by c1i2 and E 

respectively in (61). The final form for SZ is found by substituting (62), (63) and (64) into (61) and 
ordering the terms. 

APPENDIX I1 

The central difference expressions for the derivatives up to the fourth derivative of O(h4) used for 
the discretization of equations (23a) and (24a) are 

(65) 

d2yi 1 
~ = -( - yi- + 16yi- - 30yi + 16yi+ - yi+ 2 )  
dy2 12h2 

APPENDIX I11 

A consistent method for discretizing boundary conditions is to derive the finite difference 
expressions from the same polynomial. In this case an 8th order polynomial was used at i = N (see 
Figure 2), so that 

The necessary derived finite difference expressions are 

d wr 1 
-(N) = --[ - w,(N - 3) + 9wr(N - 2) - 45wr(N - 1) 
dll 60h 

d7w, + 45wr(N + 1) - 9w,(N + 2) + w,(N + 3)] + A , h 6 T ( N )  
dv 

d2w, 1 
,(N)=-[wr(N-3)-13.5w,(N-2)+ 135w,(N- 1)-245wr(N) 
dv 90h2 

(71) 
d’w, + 135wr(N + 1) - 13.5wr(N + 2) + wr(N + 3)] + A 2 h 6 7 ( N )  
dvl 
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d4wr 1 
----(A’) = -[ - w,(N - 3) + 12w,(N - 2) - 39w,(N - 1) + 56wr(N) 
dv4 6h4 

d5w, 1 
;(N) = i[ - w,(N - 3) + 4w,(N - 2) - 5w,(N - 1) 
d? 2h 

d7w, 
dq 

+ 5wr(N + 1) - 4w,(N + 2) + w,(N + 3)] + Ash2 T ( N )  (73) 

Here his the grid spacing, and A A,, A ,  and A ,  are discretization error constants. The consistency 
of this method lies in the fact that all derivatives have been derived from the same order 
polynomial, in this case an O(8) polynomial. 
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